Komplexní dodání a montáž FVE systémů o výkonu 10kW

  • zaváděcí cena dodání "na klíč" od 490.000,-Kč vč. DPH
  • v ceně rovněž vyřízení dotace (až 205.000,-Kč z NZÚ)
  • nadstandardní záruka
  • vše máme skladem

Záruka

Baterie: Na funkčnost baterie 10 let. Kapacita baterie se věkem snižuje.
Měniče: 10 let (5 let plná + dalších 5 let na materiál)
Panely: 25 let na výkon (z toho 12 let plná záruka)

Fotovoltaika je metoda přímé přeměny slunečního záření na elektřinu na velkoplošných polovodičových fotodiodách. Jednotlivé diody se nazývají fotovoltaické články a obvykle jsou spojovány do větších celků - fotovoltaických panelů. Samotné články jsou dvojího typu - krystalické a tenkovrstvé. Krystalické články jsou vytvořeny na tenkých deskách polovodičového materiálu, tenkovrstvé články jsou přímo nanášeny na sklo nebo jinou podložku. V krystalických technologiích převažuje křemík, a to monokrystalický nebo multikrystalický, jiné materiály jsou používány pouze ve speciálních aplikacích. Tenkovrstvých technologií je celá řada, například amorfní křemík a mikrokrystalický křemík. Díky rostoucímu zájmu o obnovitelné zdroje energie a dotacím se výroba fotovoltaických panelů a systémů v poslední době značně zdokonalila.

Celková instalovaná kapacita na světě činila ke konci roku 2020 téměř 714 GW, přičemž jen za rok 2020 se zvýšila o celých 134 GW, což je o 23 % více, než v předchozím roce 2019. Tento instalovaný výkon umožňuje roční produkci na úrovni zhruba 700 terawatthodin (TWh) elektřiny.

V České republice bylo v roce 2021 instalováno celkem 9 321 nových solárních elektráren s celkovým výkonem 62 MWp. Z toho bylo 42,8 MWp instalováno na střechách českých domácností a 19,2 MWp na střechách podniků a komerčních budov.

K 31. prosinci 2022 bylo v Česku v provozu 84 256 fotovoltaických elektráren s celkovým instalovaným výkonem 2 460 MWp. Z celkového výkonu všech elektráren na území Česka tak fotovoltaika zaujímá zhruba 10 %, podíl na vyrobené elektřině se však pohybuje pod 4 %.

Princip

Fotovoltaické články převádějí sluneční záření přímo na elektrický proud.

Fotony slunečního záření dopadají na přechod P-N a svou energií vyrážejí elektrony z valenčního pásu do pásu vodivostního (uvolňují je z pevných vazeb na atomy krystalové mřížky). Takto vzniklé volné elektrony se u nejjednodušších systémů odvedou pomocí elektrod přímo ke spotřebiči, případně do akumulátoru. Aby mohly být napájeny běžné domácí elektrospotřebiče na střídavý proud, je nutné doplnit střídač, který energii převede na tříd, které má velikost a frekvenci shodné s distribuční soustavou.

Nejjednodušší solární článek obsahuje dvě vrstvy s rozdílným typem vodivosti. V jedné z vrstev (materiálu typu N) převažují negativně nabité elektrony, kdežto ve druhé vrstvě (materiálu typu P) převažují „díry“, které se dají popsat jako prázdná místa, jež snadno akceptují elektrony. V místě, kde se tyto dvě vrstvy setkávají (P–N přechodu), dojde ke spárování elektronů s děrami, čímž se vytvoří elektrické pole, které zabrání dalším elektronům v pohybu z N-vrstvy do P-vrstvy.

Za normálních okolností jsou elektrony v polovodičovém materiálu pevně vázány k atomům krystalové mřížky, a materiál je tedy nevodivý. Například každý atom křemíku má čtyři valenční elektrony. Přidáním velmi malého množství prvku s větším počtem valenčních elektronů (donoru) se vytvoří oblast s vodivostí typu N, v níž se vyskytují volné elektrony, které mohou přenášet elektrický náboj. Naopak příměs prvku s menším počtem elektronů vytvoří oblast s vodivostí typu P, v níž se krystalovou mřížkou pohybují „díry“ – místa, kde chybí elektron. Při zachycení fotonu o dostatečné energii (odpovídající vlnové délce) v polovodičovém materiálu vznikne jeden pár elektron–díra. Je-li vnější obvod uzavřen, pohybují se tyto nositelé náboje opačným směrem, elektrony k záporné elektrodě a díry ke kladné.

Solární články vyžadují ochranu před vlivy prostředí, a proto se umísťují mezi ochranné vrstvy. Obvykle jsou to sklo a plastová fólie, ale používají se i dvě skla nebo jiné kombinace materiálů. Protože napětí jednoho článku je nízké, články se sériově propojují do větších panelů. Jeden solární panel poskytuje dostatek energie (současné nejvýkonnější panely až kolem 600 W) pro napájení jednoduchých zařízení, jako je rozhlasový přijímač. Pro napájení větších spotřebičů nebo ve fotovoltaických elektrárnách jsou jednotlivé solární panely propojeny do větších systémů.

Bateriové úložiště

Fotovoltaická elektrárna může být doplněna bateriovým uložištěm, které slouží k ukládání přebytků vyrobené energie. Energie může být využita v časech, kdy je požadovaný příkon vysoký, případně při výpadku sítě.

Za nejvýhodnější typ pro tento účel jsou považovány (údaj 2020) lithium–iontové baterie.


Obecné schéma zapojení FVE

Obecné schéma zapojení FVE